MTH 203: Groups and Symmetry

Homework IV

(Due 07/09)

Problems for submission

- 1. Establish the assertion in 3.1(iv) of the Lesson Plan.
- 2. Establish the assertions in the second sentence of 2.3 (iv)(a) and the first sentence of 2.3 (iv)(b) of the Lesson Plan.
- 3. Let G be a group. Show that if $(ab)^2 = a^2b^2$ for every $a, b \in G$, then G is a abelian.
- 4. Let G be a group and H < G. Then show that the following sets form subgroups of G.
 - (a) The set $gHg^{-1} = \{ghg^{-1} | h \in H\}.$
 - (b) The set $Z(G) = \{g \in G \mid gx = xg, \forall x \in G\}$ called the *center of G*.
 - (c) The set $C_G(H) = \{g \in G \mid gh = hg, \forall h \in H\}$ called the *centralizer of H in G*.
 - (d) The set $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ called the normalizer of H in G.
- 5. Let H be a group, and H, K < G. Show that $H \triangleleft K$ and $K \triangleleft G$ does not necessarily imply that $H \triangleleft G$ by picking a counterexample in D_{2n} , for some suitable $n \ge 3$.

Problems for practice

- 1. Let $G = D_{2n}$, for $n \ge 3$. Let $H = \langle r^k \rangle$, for $1 \le k \le n-1$, and let $K = \langle s \rangle$, where s is any reflection.
 - (a) Is $H, K \triangleleft G$? Explain why, or why not.
 - (b) Compute Z(G).
 - (c) Compute $N_G(H)$, $N_G(K)$, $C_G(H)$, and $C_G(K)$.
- 2. Let G be a group, H < G, and $N \lhd G$. Then show that:
 - (a) NH < G. (NH is called the *internal direct product* of N and H.)
 - (b) $H \cap N \triangleleft H$.
 - (c) $N \lhd HN$.
 - (d) If $H \lhd G$, then $NH \lhd G$.
 - (e) If o(a) is finite for some $a \in G$, then $o(Na) \mid o(a)$.
- 3. Let G be a group, and H < G. Then prove that:
 - (a) $Z(G) \lhd G$.
 - (b) N(H) < G.
 - (c) $H \lhd N(H)$.
 - (d) N(H) is the largest subgroup in which H is normal.
 - (e) $H \triangleleft G$ if, and only if N(H) = G.